Breakthrough Performance Expands Datasets, Eliminates Bottlenecks

Solve the most demanding storage and memory challenges with the Intel® Optane™ SSD DC P4800X/P4801X series.

Every day, the amount of data created across the world is exploding to new levels. Enterprises and cloud service providers thrive on this data to make critical decisions, gain new insights from the data, and differentiate services. But, today’s current storage technologies leave a gap in data storage tiers. DRAM is far too expensive to scale and while NAND has the capacity and cost structure to scale, it lacks sufficient performance to function in the memory space. To address the gap, a storage solution that behaves like system memory is needed.

Combines Attributes of Memory and Storage
The Intel® Optane™ SSD DC P4800X series is the first product to combine the attributes of memory and storage. With an industry-leading combination of high throughput, low latency, high QoS, and high endurance, this innovative solution is optimized to break through data access bottlenecks by providing a new data storage tier. The DC P4800X/ P4801X accelerates applications with fast caching and fast storage to increase scale per server and reduce transaction costs for latency sensitive workloads. In addition, the Intel® Optane™ DC P4800X enables data centers to deploy bigger and more affordable datasets to gain new insights from large memory pools.

High Throughput for Breakthrough Performance
Realize breakthrough application performance with the Intel® Optane™ DC P4800X/P4801X. It is designed to deliver up to 6x faster performance at low queue depth workloads,1 exhibiting extremely high throughput for single accesses and super low latency. Where NAND-based SSDs are often measured at a queue depth of 32 (SATA) or 128 (NVMe*) in order to showcase maximum throughput, the Intel® Optane™ DC P4800X/P4801X can reach as many as 550,000 IOPS at a queue depth of 16.2 This new technology is perfectly suited to accelerate enterprise applications to new, breakthrough levels of performance.

Low Latency: Responsive Under Load
With a new data storage tier created by Intel® Optane™ technology, data centers can consistently realize amazing response times under any workload. With NAND-based SSDs, random write operations require an immense amount of background media management. These tasks can add significant delay to the read operations. The Intel® Optane™ SSD DC P4800X/P4801X maintains consistent read response times regardless of the write throughput applied to the drive. Average read response times remain below <30μs while maintaining a 70/30 mixed read/write bandwidth of 2GB/s.2

Predictably Fast Service: QoS
In an environment of fast growing data and ever demanding needs, data centers must deploy solutions that enable predictably fast service. The Intel® Optane™ DC P4800X/ P4801X is ideal for critical applications with demanding latency requirements. Its 99% read response time is up to 63x better than that of a high-endurance NAND SSD under random write workload.3 Optimized to minimize delays in data access times, the Intel® Optane™ DC P4800X /P4801X results in faster time to insight for decision making. 

High Endurance
Endurance affects the life expectancy and costs of enterprise SSDs. The DC P4800X/P4801X is designed for high write environments, and can withstand intense write traffic that is typically demanded of memory. With its extremely high endurance, the life of the DC P4800X/P4801X is extended, making it suitable for write-intensive applications such as online transaction processing, high performance computing, write caching, boot, and logging.

Use Cases for Today’s Data Center
The Intel® Optane™ DC P4800X provides a new storage tier that breaks through the bottlenecks of traditional NAND storage to accelerate applications and enable more work to get done per server. This unique capability means data centers can explore three key use cases, including caching, fast storage, and extended memory. The DC P4801X can also provide fast logging, caching, boot, or extended memory. Caching and fast storage refer to the tiering and layering that support a better memory-to-storage hierarchy. The Intel® Optane™ SSD facilitates dynamic placement of data that enables fast access to both read and/or write data. In addition, this high performing SSD meets the requirement of an application to accelerate storage access.

An Intel® Optane™ SSD can also extend memory, offering bigger or more affordable memory by participating in a shared memory pool with DRAM at either the OS or application level. Bigger memory dramatically increases the size of ‘working sets’ to enable new insights from data in growing segments such as scientific computing, healthcare, and autonomous driving. More affordable memory means data centers can use Intel® Optane™ SSDs to displace some DRAM.

Intel® Optane™ SSD DC P4801X Series – Features & Specification

FEATURE

SPECIFICATION

Capacity per Form Factor

Half-height, Half-length (HHHL) Add-in-Card (AIC): 375GB, 750GB, 1.5TB

2.5” x15mm, Small Form Factor U.2: 375GB, 750GB, 1.5TB

P4801X: U.2: 100GB M.2: 100GB, 200GB, 375GB

Form Factor

Add-in-Card (AIC), Half-height, Half-length, Low-profile; U.2 2.5in, 15mm; M.2 110mm

Interface

PCIe* 3.0 x4, NVMe*

Latency (typical) R/W2

<10/12μs

Quality of Service (QoS): 99.999%2 4KB Random, Queue Depth 1, Read/Write: <60/100 μs; 4KB Random, Queue Depth 16, R/W: <150/200 μs
Throughput2 4KB Random, Queue Depth 16, Read/Write: up to 550/550k IOPS
4KB Random, Queue Depth 16, Mixed 70/30 Read/Write: up to 500k IOPS
Endurance (JESD219 workload)
Drive Writes per Day=DWPD; Petabytes Written=PBW
30 DWPD: 375GB - 20.5 PBW; 750GB - 41 PBW
60 DWPD: 100GB - 10.9 PBW; 200GB - 21.9 PBW; 375GB - 41.0 PBW; 750GB - 82.0 PBW; 1.5TB - 164 PBW
Power Enhanced power-loss data protection
P4800X: Active/Idle: Up to 18 W / 7 W
P4801X: Active/Idle: Up to 11 W / 3 W
For more up-to-date product specifications, visit ark.intel.com

Intel® SSD Data Center Family


Informasi Produk dan Performa

1

Sumber – Telah diuji oleh Intel: Performa 4K 70/30 RW pada Kedalaman Antrean Rendah. Diukur menggunakan FIO 3.1. Konfigurasi Umum - Sistem Server Intel® 2U, OS: CentOS* 7.5, Kernel 4.17.6-1.el7.x86_64, CPU 2 x prosesor Intel® Xeon® Gold 6154 @ 3,0 GHz (18 core), RAM DDR4 256 GB @ 2666 MHz. Konfigurasi – Intel® Optane™ SSD DC P4800X 375 GB dibandingkan dengan Intel® SSD DC P4600 1,6 TB. Mikrokode Intel: 0x2000043; BIOS Sistem: 00.01.0013; ME Firmware: 04.00.04.294; BMC Firmware: 1.43.91f76955; FRUSDR: 1.43. Hasil benchmark mungkin perlu direvisi saat pengujian tambahan dilakukan. Hasil performa didasarkan pada pengujian per tanggal 15 November 2018 dan mungkin tidak mencerminkan semua pembaruan keamanan yang tersedia secara umum. Lihat pengungkapan konfigurasi untuk detailnya. Tidak ada produk yang sepenuhnya aman.

2

Drive Intel yang dievaluasi - Intel® Optane™ SSD DC P4800X 375 GB. Pengujian dan Konfigurasi Sistem: CPU: prosesor Intel® Xeon® E5-2687W v4 3,0 GHz 30 MB 160 W 12 core, Soket CPU: 2, Kapasitas RAM: 32 GB, Model RAM: DDR4 2133 MHz, PCIe* Attach: CPU (tidak terpasang jalur PCH), Chipset: Chipset Intel® C610, BIOS: SE5C610.86B.01.01.0024.021320181901, Switch/ReTimer Model/Vendor: Intel A2U44X25NVMEDK, OS: CentOS* 7.3.1611, Kernel: 4.14.50, Versi FIO: 3.5; Driver NVMe*: Inbox, C-state: Dinonaktifkan, Hyper Threading: Dinonaktifkan, Pengaturan CPU (melalui OS): Mode Performa; EIST (Speed Step): Dinonaktifkan, Mode Intel Turbo: Dinonaktifkan, P-state = Dinonaktifkan; Layanan Penyeimbang IRQ (OS) = Nonaktif; Afinitas SMP, disetel di OS; QD1 menggunakan Mode Polling I/O. Hasil performa berdasarkan pengujian per 31 Agustus 2018, dan mungkin tidak mencerminkan semua pembaruan keamanan yang tersedia untuk umum. Lihat pengungkapan konfigurasi untuk detailnya.

3

Sumber – Diuji oleh Intel: Waktu respons merujuk pada latensi pembacaan rata-rata yang diukur pada kedalaman antrean 1 selama beban kerja penulisan acak 4K menggunakan FIO 3.1. Lihat konfigurasi di Catatan Kaki 1 di atas.